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ABSTRACT: 

 

Subpixel image registration is the key to successful multi-angle remote sensing image applications such as image fusion, 

superresolution and classification. However, multi-angle remote sensing images pose some difficulties for automatic image 

registration, namely, 1) precisely locating control points (CPs) is difficult as large view angle images are susceptible to resolution 

change and blurring; and 2) local geometric distortion caused by variations in platform stability makes rigid transform models such 

as the projective model unreliable. In this paper we propose a two-stage automatic registration scheme for multi-angle remote sensing 

imagery. In the first step, CPs are gathered via the scale invariant feature transform (SIFT). However, CPs collected by SIFT may be 

too few or unevenly distributed. Therefore, another CPs collecting procedure based on normalized cross-correlation follows. In order 

to eliminate outliers in the CPs a geometric constraint is utilized; after outlier elimination in order to get CPs of high accuracy for the 

estimation of the thin plate spline model, which is used to solve the local geometric distortion problem, a pre-fitting procedure is 

adopted. The methodology developed in this paper is applied to three Compact High Resolution Imaging Spectrometer onboard the 

Project for On-board Autonomy (CHRIS/Proba) images. Experimental results demonstrate the efficiency and accuracy of the 

proposed method. 
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1. INTRODUCTION  

Many recently available remote sensing imaging systems are 

equipped with multi-angle functions for a better understanding 

of the earth’s surface character. These include the Multispectral 

Thermal Imager (MTI), the Multi-angle Imaging Spectro-

Radiometer (MISR), the Along Track Scanning Radiometers 

(ATSR-1, ATSR-2, AATSR), and the Compact High 

Resolution Imaging Spectrometer onboard the Project for On-

board Autonomy (CHRIS/Proba). The number of captured 

images and view angles varies from platform to platform. For 

example, the MTI can capture two images at 0° and 50° in a 

single pass, and the AATSR can observe the same target at 

view zenith angles of 0° and 55°. However, MISR can produce 

image stacks for nine camera angles (+70°, +60°, +45.6°, + 

26.1°, 0°, -26.1°, -45.6°, -60°, -70°)  and CHRIS/Proba 

provides multiple observations of the same scene at five 

different angles (+55°, +36°, 0°, -36°, -55°). These 

functionalities open up new applications in the areas of change 

detection, image fusion for classification and thematic map 

production, resolution enhancement and so on (Chan 2008a, 

Chan 2008b). However, for any successful application, 

accurate registration of these multi-angle images is a 

prerequisite. Automatic registration in these cases faces two 

main challenges: 1) images captured at large view angles are 

susceptible to resolution change and blurring, which makes 

precisely locating control points (CPs) difficult; 2) local 

geometric distortion caused by variations in platform stability 

is serious, which makes rigid transform models such as the 

projective model unreliable. A manual registration approach is 

not impossible in situations where a large number of images 

need to be registered. Also the accuracy of the manual 

approach can not be consistent as it strongly depends on 

decisions made by the operator. Thus, there is a pressing need 

for automatic image registration methods for multi-angle 

imagery.   

 

A typical registration method can be divided into four steps: 1) 

feature detection; 2) feature matching; 3) transform model 

estimation; and 4) image resampling (Zitova and Flusser, 

2003). There are many registration approaches, but depending 

on whether feature detection (step 1) is involved, registration 

methods can broadly be classified into two categories: area-

based and feature-based methods (Zitova and Flusser, 2003).  

 

Generally speaking, area-based methods have higher accuracy 

than feature-based methods, and they are particularly well-

suited for images acquired from the same sensor (Eastman et al., 

2007). However, there are difficulties in applying area-based 

methods directly on multi-angle imagery. Geometric distortion 

is usually high for images acquired at high view angles, making 

it impossible to use a rigid transform model such as the affine 

or projective transform. A viable alternative is to use a non-

rigid registration model by searching for an adequate number of 

quality CPs and then estimating the model’s parameters. 

However, if these CPs are gathered by first defining a window 

in the input image and then searching for a window match in 

the reference image, we face the problem of having to deal with 

a very large searching space (in the reference image). In order 

to solve this problem usually a coarse-to-fine hierarchical 

strategy is adopted. The template first finds candidate locations 

in the reference image at a coarse resolution, which can be 

obtained by way of the pyramid approach; then the positional 

accuracy is gradually improved by moving up to finer 

resolutions. However, for multi-angle imagery such as 

CHRIS/Proba, this method is not applicable as the gray level 

similarity between multi-angle imagery is weak due to 



 

resolution disparity and severe blurring. Comparatively, 

feature-based methods that work on image features are more 

robust to variations in view angle and are therefore more suited 

for multi-angle imagery registration (Capel and Zisserman, 

2003). However their disadvantage is that the number of 

detected CPs is sometimes few and therefore will cause 

problems for the estimation of a complex non-rigid transform 

model such as the thin plate spline (TPS) or piecewise linear 

(PL) model. To tackle the above-mentioned problems, we 

outline in this paper an automatic registration method that 

integrates the merits of both area-based and feature-based 

methods. It involves a two-stage CPs detection scheme where 

candidate CPs are collected first with the scale invariant feature 

transform (SIFT) method and then with a template matching 

method using normalized cross-correlation (NCC) as a 

criterion. It also incorporates a hierarchical approach to refine 

the collected CPs. The outliers in the SIFT CPs are discarded 

by the ambiguity criterion and a robust estimation of the 

projective transform model with m-estimator sample consensus 

(MSAC) (Torr and Zisserman, 2000); the outliers in the NCC 

CPs are eliminated by a spatial constraint instead of a threshold 

on the NCC coefficients. In order to make sure CPs are as 

accurate as possible, a final iterative refining procedure based 

on the statistical nature of CPs is performed to remove CPs of 

low accuracy. The TPS model is finally estimated via the 

selected CPs. The non-rigid TPS model is adopted to surmount 

the serious local distortion problem in multi-angle imagery.  

 

We tested our approach on three sets of CHRIS/Proba images 

and accurate registration results are attained. In the following 

section the methodology is described (section 2). Experimental 

results are presented in section 3. Section 4 focuses on major 

conclusions and directions for future research.  

 

2. METHODOLOGY 

The proposed registration method is composed of four stages 

(Figure. 1). Each stage is described in detail below. 

 
Figure 1.  Flow chart showing the processing chain 

 

2.1 SIFT Control Points Selection 

Among various local feature detection methods, SIFT is a 

promising approach because it improves detection stability in 

situations of noisy input (Lowe, 2004). The method is also 

preferable when changes occur in scale, illumination, and to a 

certain extent in the 3D camera viewpoint. It achieves almost 

real-time performance and the detected features are highly 

distinctive. An extensive evaluation of various local 

descriptors’ robustness in terms of viewing conditions and 

blurring effects is found in Mikolajczyk and Schmid (2005), 

and SIFT-based descriptors are described as the best 

performers. SIFT not only defines the position of detected 

points but also describes point detection quality. The detected 

SIFT points, also referred to as keypoints, are candidate CPs 

for feature matching. A keypoint descriptor is a quality 

measurement describing the region around the keypoint. The 

SIFT algorithm can be divided into four steps: scale-space 

extrema detection, keypoint localization, orientation 

assignment and keypoint descriptor assignment.  As space is 

limited we refer the interested reader to Lowe (2004) for more 

details.  

 

Once the keypoint descriptor has been calculated, keypoints 

can be matched by using the minimum distance method. 

However, not every pair of matched keypoints can be thought 

of as SIFT CPs as the keypoint descriptor only contains limited 

context and hence feature matching will often be ambiguous. 

Two criteria are used to filter out the outliers, or the bad pairs. 

The first criterion is
th

T , an indicator of the ambiguity of each 

matched keypoint.  
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where d1 is the distance to the nearest matched keypoint and d2 

is the distance to the second nearest. If Tth is close to 1, it 

means d1 is close to d2. That is to say, for a certain keypoint in 

the input image, SIFT detected two possible matching 

keypoints in the reference image. This is an ambiguous 

situation and the matched pair will be deleted if 0.75
th

T > . 

 

The second criterion is a spatial constraint based on the MSAC 

algorithm. Although local geometric distortion exists in multi-

angle images, the main geometric relationship can still be 

represented by a projective transform model (Capel and 

Zisserman, 2003). MSAC utilizes this spatial relationship to 

eliminate falsely matched keypoints. MSAC, or m-estimator 

sample consensus, is an improved version of the RANDom 

Sample Consensus (RANSAC) algorithm, which has been 

widely used for rejecting outliers in matching points (Kim and 

Im, 2003). Both algorithms first estimate a projective model 

with four randomly selected points. After that the transform 

model is evaluated with regard to a fitting cost function:   
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where i refers to the ith matched keypoint pair and ρ is the 

error term defined as: 
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In equation (3) Tm is the threshold beyond which the matched 

keypoint pairs are considered outliers for the transform model, 

and 2 2 2 2 2( ) ( ) ( ) ( )i i i i i i i i ie x x y y x x y y′ ′ ′ ′= − + − + − + − is 

defined as the observed error function for a matched keypoint 

pair ( , ) ( , )
i i i i

x y x y′ ′↔ , with ( , )
i i

x y , ( , )
i i

x y′ ′  point 

positions calculated via the estimated projective transform 

model. L is a variable that determines the difference between 

RANSAC and MSAC. For RANSAC L=0, which means every 

inlier has the same effect on the estimated transform model; for 

MSAC
2

L e= , which means every inlier has a different 

influence on the fitting of the estimated transform model. Thus, 

it permits more flexibility in setting Tm. In case Tm is set too 

high some outliers can be regarded as inliers. MSAC mitigates 

this by treating all inliers differently. The default setting for Tm 

is 64. In this study, the above procedures were repeated 500 

times and the transform model with the lowest fitting cost 

function value C was selected. Finally, the projective transform 

is re-estimated using all the keypoint pairs whose observed 

error function 2e values are lower than Tm. These keypoint pairs 

constitute the first set of CPs, which are referred to as SIFT 

CPs in the paper.  

 

 

2.2 NCC Control Points Selection 

The problem of using only feature-based SIFT to generate CPs 

is that the number of CPs may be too small and CPs may be 

unevenly distributed. To remediate this problem, an area-based 

CP selection procedure is initiated. First, an intermediate 

registered image is generated by applying the projective 

transform described in Stage 1. We will call this image the 

‘intermediate input image’ and use it for a template matching 

procedure. The intermediate input image is separated into 

image chips of 64×64 pixels, and each chip is matched with a 

corresponding chip in the reference image via NCC, or 

normalized cross-correlation. The matched center points of the 

chip pairs are then used as candidate CPs. This way the number 

of CPs for the final non-rigid transform model estimation is 

increased. The NCC coefficient r is calculated as:  
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where ( , )
T

g i j and ( , )
S

g i j represent the grey values of the 

image chips in the input image and in the reference image 

respectively. 
T

g and
S

g are the corresponding mean grey 

values respectively. R and C are the numbers of rows and 

columns of the image chips.  

 

NCC has the following advantages that make it well-suited for 

CP searching: 1) the NCC coefficient is brightness invariant, 

that is to say, in the case of changes in external illumination the 

NCC coefficient will not change. This is especially important 

for multi-angle imagery as objects captured at different view 

angles may have different illumination and reflectance 

characteristics; 2) NCC CPs are robust to blurring. While the 

NCC coefficient will vary with the blurring of the template, the 

position of its maxima will not change. This is also important 

for images acquired at high view angles as these usually suffer 

from serious blurring; 3) NCC is comparatively fast to calculate 

(Lewis, 1995); and 4) NCC CPs obtained from image chips 

will be evenly distributed across the whole image.  

 

There are three important issues with regard to collecting NCC 

CPs. The first has to do with template size. The larger the 

template is, the more unique the matching entity will be. 

However, the calculation load will increase as well. In our 

implementation the template window size was set at 64×64 as a 

compromise between calculation load and accuracy. In most 

cases, this window size enables us to find enough salient image 

features like lines and ridges. The second issue is related to the 

size of the searching space. We define a searching space which 

is about one and a half times the size of the template in the 

intermediate input image, that means the searching space has a 

size of 96×96. As the intermediate input image almost overlaps 

with the reference image, such a large space can make sure the 

template can find the matching chip within the constrained 

space. The last issue is about how to arrive at subpixel 

accuracies. In many applications, such as superresolution image 

reconstruction, subpixel accuracy is required. However, NCC 

can only determine an integer value for the CP position. In 

order to obtain subpixel accuracy, a 2nd order polynomial 

around the position of the NCC coefficient maximum is 

established. Nine points are used to determine the 2nd order 

polynomial applying the least-squares method. The CP position 

with sub-pixel accuracy corresponds to the location where 

partial differentiation of the polynomial reaches a zero value.  

 

After NCC CPs have been gathered, they need to be screened 

for outliers. Homogeneous areas such as sand and water, which 

show repetitive patterns or low contrast may lead to false 

matches. NCC may also fail when moving objects such as 

clouds and shadows occur in the imagery. The traditional way 

to eliminate outliers in NCC CPs is by thresholding the NCC 

coefficients. However, initial experiments showed that this 

method is not effective. It is difficult to define a proper 

threshold for all the images, and it often occurs that the 

matching is successful in spite of coefficient values smaller 

than the threshold, and vice versa. We therefore use a 

geometric constraint to detect outliers in NCC CPs. If the 

distance between a pair of CPs is larger than a threshold value 

Td, it is regarded as an outlier. The default setting for Td  is 16.  

 

2.3 Control Points Refining  

At this stage in the process two groups of CPs have been 

obtained: one SIFT and one NCC set. Both sets have gone 



 

through outlier detection procedures, and together they 

constitute the potential set of CPs for TPS model estimation. 

As TPS is based on interpolation, it is important to make sure 

that each pair of CPs is as accurate as possible.  

 

At this stage, the objective is to obtain the most accurate CPs 

possible by pruning points with large random errors. This can 

be done by utilizing the statistical characteristics of the CPs. 

Given a true, noise-free CP ( , )x y in the reference image, the 

probability density of the corresponding observed CP 

location ( , )x y can be thought of as a normal distribution 

(Capel and Zisserman, 2003):  
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The observed noisy point ( , )x y  is the detected CP in the 

reference image, and the true, noise-free point ( , )x y  comes 

from the calculated CP via the CP in the input image and an 

estimated 3rd polynomial transform model. The polynomial 

transform of the 3rd order has often been used when 

geometrical distortion is substantial, and the residual stochastic 

characteristics of the 3rd order polynomial transform have been 

well studied (Buiten and van Putten, 1997). While it is not the 

recommended transform model for multi-angle imagery, it has 

the following characteristics which make it suitable for pre-

fitting: 1) the polynomial function is an approximation 

function, which means that a CP pair with a comparatively 

large random error will not dramatically degrade the 

polynomial function parameter estimation; 2) the 

approximately evenly distributed NCC CPs contribute to an 

unbiased estimation of parameters. For a normal distribution, 

about 99.7% of the values are within plus and minus three 

standard deviations from the mean. Therefore, if the measured 

error of a CP pair is larger than three standard deviations, it is 

considered as a large random error and the CP pair will be 

discarded. 

 

The CPs refining stage can be summarized as follows:  

(i) Define a 3rd polynomial transform model using the least-

squares method with all the CPs.  

(ii) Calculate the noise-free point position, and obtain the 

model residual dx and dy in the horizontal and vertical 

direction. Compute the mean and standard deviation of dx and 

dy, and eliminate the points whose dx or dy value is beyond 

three standard deviations. 

(iii) Repeat the above procedures until the following condition 

is fulfilled: the residuals in both directions are within three 

standard derivations. 

 

2.4 Image Warping 

TPS is an interpolation function with the CPs having a one-to-

one mapping relationship. TPS is also the only spline model 

that can be cleanly decomposed into a global affine and a local 

non-affine warping component, and thus it can account for the 

local deformation caused by optical effects, relief change and 

so on (Chui, 2000). The thin-plate spline interpolation function 

can be expressed as: 
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where ( , )x y is the coordinate in the input image, and 

( ( , ), ( , ))f x y g x y is the coordinate in the reference image. 

( , )
i i

x y is the detected CP position in the input image. 

2 2 2( ) ( )
i i i

r x x y y= − + − represents the distance between  

( , )x y and ( , )
i i

x y , and 
11 23

,...,h h define an affine transform 

matrix. 
i

F  and 
i

G are the weights of the non-linear radial 

interpolation function.  

 

 

To solve equation (6) with N pairs of CPs, the following 

equilibrium constraints are imposed: 
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With N pairs of CPs and the six equations in equation (7), we 

can solve the 2N+6 unknown parameters in the TPS model. A 

more compact calculation for the unknown parameters is 

expressed as:   
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After the parameters of the TPS model have been estimated, the 

warping of the input image can be performed using the TPS 

model and the bilinear resampling function.  

 

3. EXPERIMENTS 

The proposed method was tested on multi-angle CHRIS/Proba 

imagery. All the images were acquired in mode 3 at five 

different view angles. The result of the 18th band (1002 - 1035 

nm) will be used as a demonstrator. The reference image is the 

nadir image. Details of the data sets are described in Table I.  

 

Site Country Time 

Kalmthout Belgium 1st July, 2008 

Dijle Valley Belgium 20th May, 2008 

Ginkelse Heide TheNetherlands 22nd Oct., 2007 

               
Table 1. Study area 

 



 

The pre-processing of CHRIS/Proba was done with the open-

source software BEAM CHRIS-Box. It includes two important 

procedures: 1) noise reduction: replace missing data and de-

striping; 2) atmospheric correction: retrieve the surface 

reflectance from remotely sensed imagery by removing the 

atmospheric effect (Guanter, 2005). 

Figure 1 shows the 18th band for the five multi-angle images 

(+/-55°, +/-36°, and 0°) for the Kalmthout site. It is clear from 

Figure 1 that blurring for large view angles (+/- 55°) is serious 

and that illumination conditions vary with different view 

angles. All the off-nadir images were co-registered to the nadir 

image using the proposed method. 

          

Twenty sets of manually selected CPs were used as ground 

truth. The registration accuracy, represented by the root mean 

square error (RMSE), was calculated for each registered image 

as shown in Table 2.  

                               

Site Angle RMSE 

+36 0.1266 

-36 0.1492 

+55 0.1526 

 

Kalmthout 

-55 0.1655 

+36 0.1239 

-36 0.1114 

+55 0.2124 

 

Dijle Valley 

-55 0.1335 

+36    0.1271 

-36 0.1211 

+55 0.3506 

 

Ginkelse 

Heide 

-55 0.2991 

Average - 0.1727 

 

Table 2. Registration accuracy for different images 

 

The average registration accuracy assessed by means of a set of 

manually selected CPs is about 0.1727 pixels, which is very 

high. The results also show that on average the registration 

error for larger view angles at +/-55° is higher than for smaller 

view angles at +/-36°, which is normal. Results of visual 

evaluation of the proposed algorithm are shown in Figure 2. 

Three zooms are provided showing that the registered image 

fits well with the reference image across the whole scene.  

 

4. CONCLUSION 

In this paper a two-stage registration scheme is proposed. 

Salient SIFT CPs are detected first and then used for the 

estimation of the projective transform in stage 1. SIFT is shown 

to be a good feature detection method for multi-angle imagery. 

Even in the case of severe blurring and large resolution 

disparity between multi-angle imagery, at least 4 pairs of true 

SIFT CPs can be detected for the intermediate projective 

transform model estimation. The outliers in the set of candidate 

SIFT CPs can be successfully identified via the ambiguity 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

criterion and MASC. Outlier detection is not only important for 

identifying true SIFT CPs but also vital for detecting 

subsequent NCC CPs. Our experiments also testify that without 

this outlier procedure the intermediate input image will not 

overlap well with the reference image, which will make 

subsequent NCC CP detection fail.  

 

NCC has also been proven to be a good area-based CP 

detection method for obtaining evenly distributed CPs in stage 

2. After pre-registration the intermediate input image has 

geometric characteristics similar to the reference image. This 

intermediate step not only makes template matching much 

easier because the searching space is more constrained but also 

makes the NCC matching criterion hold. For example, if two 

image chips are of a different spatial resolution, which is the 

case for multi-angle imagery, NCC will fail. Also NCC’s 

robustness to illumination change and blurring makes it 

particularly suited for CP detection, starting from the 

intermediate input image.   

 

The iterative CP refining procedure in stage 3 is based on two 

assumptions: (1) the density of observed CPs is Gaussian, and 

(2) a 3rd order polynomial function is an empirically more 

appropriate global transform model for multi-angle imagery. 

Actually before the automatic registration method for 

CHRIS/Proba was proposed, different transform models were 

tested with CPs selected by hand. The 3rd order polynomial 

model proved to be a better transform model than other global 

transform models. During the refining procedure bad CPs with 

large random errors are successfully identified, however, a 

small part of the good CPs with high accuracy are eliminated as 

well. Indeed, while the 3rd order polynomial model residual 

can be thought of as an indictor of a bad pair of CPs, the large 

model residual can not guarantee it really is (Buiten and Van 

Putten, 1997). Visual inspection of the final CPs demonstrates 

that after CP refining only CPs with high accuracy are left.  

 

The TPS model in stage 4 not only helps to deal with local 

distortion in multi-angle imagery but also helps to reach sub-

pixel registration accuracy. Another key component to reach 

sub-pixel accuracy is that the CPs themselves are detected with 

sub-pixel accuracy by way of interpolation.  

 

The overall results obtained with three multi-angle 

CHRIS/Proba image sets are encouraging. The proposed 

     
                   (a)                                         (b)                                         (c)                                             (d)                                 (e) 

Figure 1. Multi-angle CHRIS/Proba imagery for the Kalmthout site: (a) Nadir (the squares correspond to the zones shown in detail in Figure 

2), (b) +36°, (c) -36°, (d) +55°, (e) -55°.  



 

method can also be applied on other multi-angle imagery from 

systems such as MTI and MISR.  
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Figure 2.  Registration results for the Kalmthout site. The first, second and third row correspond to the upper left corner, the center 

and the bottom right corner of Figure 1 respectively. In each row the centers of the cross correspond to the same point at different 

view angles after registration. 
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